
MEABench
Daniel Wagenaar

Release 1.2.5, March 2011

MEABench is a set of command line and GUI utilities to
process data from the Multi Channel Systems MEA60
amplifier. Adaptation for different hardware should be
straightforward. MEABench was designed with exten-
sibilitity in mind, and is fully modular. That means
that filters can be inserted anywhere in the data pro-
cessing stream. This document describes the basics of
the toolset and the usage of the individual programs.

Copyright c© Daniel Wagenaar 1999-2011.
MEABench is free software. You can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. However, I encourage you to contact me if you wish to do so.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

You may redistribute and/or modify this documentation under the terms of the GNU Public Documen-
tation License as published by the Free Software Foundation. However, as for the software, I encourage you
to contact me if you wish to do so.

The latest version of this document and of the software described in it, is available for public download

from http://www.danielwagenaar.net/meabench.

Contents

1 Introduction 4
1.1 Conventions . 5
1.2 Acknowledgments . 6

2 Compilation and installation 7

3 Examples 9
3.1 Ensuring that the driver is loaded . 9
3.2 Displaying electrode traces on-line . 9
3.3 Online spike detection . 11
3.4 Triggered recording . 14
3.5 Using Commander . 15

4 Basics of the toolset 17

5 List of components 18

6 Details of each component 20
6.1 Rawsrv . 20
6.2 Spikedet . 21

6.2.1 BandFlt . 22
6.2.2 AdaFlt . 23
6.2.3 LimAda . 23
6.2.4 SNEO . 23

6.3 60hz . 24
6.4 Salpa . 25
6.5 Record . 26
6.6 Replay . 27
6.7 Scope . 28
6.8 Spikesound . 29
6.9 Flexraster . 29
6.10 Commander . 30
6.11 Monitor . 31
6.12 Neurosock and NSsrv . 31
6.13 Spikedump . 32
6.14 Doublectxt . 32
6.15 Other utilities . 32
6.16 Matlab functions . 32

2

Wagenaar, MEABench CONTENTS 3

7 File formats 36
7.1 Raw files . 36
7.2 Spike files . 36

8 Hints and tips 37
8.1 Help! None of the programs will run. 37
8.2 Shared memory problems . 37
8.3 Help! Client X keeps saying ‘waiting for START from Y’ and won’t run. . . 38
8.4 Abbreviating commands . 38
8.5 Passing commands at run time . 38
8.6 Interrupting long commands . 39
8.7 Debugging information . 39
8.8 Contacting the author . 39
8.9 Reporting bugs . 39

Chapter 1

Introduction

MEABench is an open-source suite of programs for acquisition and analysis of multi-electrode
array (MEA) recordings. MEABench was developed by Daniel Wagenaar at Caltech, drawing
on the excellent example set by MultiChannel Systems’ MC Rack suite1.

The software runs under Linux and other Unix variants, and is freely distributable under
the terms of the GNU Public License (see http://www.gnu.org/copyleft/gpl.html). It
offers the following functionality:

• Acquisition of raw electrode data from MultiChannel Systems’ MCCard;

• Complete removal of mains (60 Hz) interference using template filtering;

• Removal of stimulation artifacts using the SALPA algorithm2;

• Online and offline detection of spikes;

• Online visualization of electrode data and spikes;

• Online sonification of spikes;

• Continuous or windowed saving of raw data and spikes;

• Saving of spike waveforms, for later spike sorting and analysis;

• Replaying of raw and spike files, at any speed;

• Instant-replay buffer for easy analysis of recent events;

• Online generation of raster plots;

• Continuous monitoring of varying noise levels;

• A variety of utilities for analysis and data format conversion, including:

– Averaging of electrode recordings over trials;

1See http://www.multichannelsystems.com.
2D. A. Wagenaar, and S. M. Potter: Real-time multi-channel stimulus artifact suppression by local curve

fitting. J. Neurosci. Meth. 120:2, 2002, pp 113–120. This, and most other publications mentioned here,
may be obtained from my website, http://www.biology.ucsd.edu/~dwagenaa/pubs.html.

4

Wagenaar, MEABench Introduction 5

– Conversion of binary spike files to ASCII representation;

– Filtering of spike files based on any mathematical expression involving shape or
timing parameters;

– Extraction of single channels from 64 channel streams;

– Splitting of long data files into trials;

– Splitting of long data files into channels;

– Computing spike rates;

– Detecting culture-wide bursts.

• Matlab functions to import MEABench data1;

• A program to allow easy scripting of MEABench modules for offline processing.

MEABench is fully modular, and any user with some Unix programming experience can
extend it to fit her or his needs. Since MEABench can stream live data to your extension
modules, it is well suited, for example, to drive real-time feedback systems. In fact, the
ability to communicate with other software or hardware in real-time was one of the primary
motives for the conception of MEABench. It allowed a reliable, sub-100 ms feedback loop
time in our Neurally Controlled Animat2,3.

MEABench was written primarily for use with the MultiChannel Systems MEA hard-
ware, and a driver is included for their MCCard data acquisition card, written by Thomas
B. DeMarse with advice from MultiChannelSystems. If you use different data acquisition
hardware, you may still find MEABench useful, because, due to its modular nature, it is
possible to write plug-in modules to read data from your hardware. An experimental driver
for one such board (manufactured by United Electronic Industries, but not endorsed by us
at its state of development as of Nov 2002) is included as well.

MEABench has been in constant use in the Pine lab at Caltech for over four years, and
at Steve Potter’s group at Georgia Tech4 since its beginning. It is also used by several other
research groups in the US, Europe and Asia. MEABench remains a work in progress; we
welcome suggestions for improvement (and bug reports). Please join in the development by
submitting your code (patches and improvements) for inclusion in future releases.

Another introductory article about MEABench was presented at the IEEE EMBS Con-
ference on Neural Engineering5.

1.1 Conventions

Throughout this document, the names of MEABench programs are typeset Like this. When
running MEABench programs, the capitalization should be omitted. Commands defined

1Users may also be interested in Uli Egert’s comprehensive set of matlab code for MEA data analysis;
freely available at http://www.brainworks.uni-freiburg.de/projects/mea/meatools/overview.htm.

2T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter: The neurally controlled animat:
Biological brains acting with simulated bodies. Autonomous Robots 11, 2001, pp 305–310.

3D. A. Wagenaar, and S. M. Potter: A versatile all-channel stimulator for electrode arrays, with real-time
control. J. Neural Eng. 1, 2004, pp 39–44.

4Public website: http://www.neuro.gatech.edu/groups/potter/index.html
5D. A. Wagenaar, T. B. DeMarse, and S. M. Potter: MEABench: A toolset for multi-electrode data ac-

quisition and on-line analysis. 2nd International IEEE EMBS Conference on Neural Engineering, Arlington,
VA, March 16–19, 2005.

Wagenaar, MEABench Introduction 6

within MEABench programs are set like this. The names of MEABench streams look like
this, and their types like this. Ctrl-C means holding the Ctrl key while pressing ‘C’.

In examples, text you type is set like this. Text the computer produces is set like this,
with prompts highlighted like this. The unix prompt is represented as $.

In definitions of MEABench commands, parameter names are written like this, optional
paramaters are enclosed in brackets [like this], and alternatives are separated by a vertical
pipe: this|that.

1.2 Acknowledgments

I’d like to acknowledge valuable input and support from Steve Potter, Tom DeMarse and
Jerry Pine. We are all grateful for financial support from the NIH-NINDS and the Burroughs-
Wellcome Fund, and for cooperation, technical support, and equipment from MultiChannel
Systems. Portions of MEABench were written by Tom DeMarse, Ryan Haynes, John Rolston,
and Brookes Poo.

Chapter 2

Compilation and installation

If you intend to use MEABench with MultiChannel Systems hardware, installation is very
straightforward. The following is a step by step guide.

• Make sure you have gcc 2.95 or later.

• Make sure you have Qt 3.0 or later. (Qt 4 or later will not work. Most linux distribu-
tions allow you to install Qt 3 and Qt 4 side by side.)

• Make sure your kernel is 2.4.10 or later. (Kernel 2.6.x recommended.)

• Download the latest version of MEABench, and unpack it:

$ tar xzf meabench-1.2.5.tar.gz

• Enter the directory:

$ cd meabench-1.2.5

• Choose the directory were you want to install MEABench, e.g., /opt/meabench, and
configure:

$./configure --prefix=/opt/meabench --with-hardware=mcs

(The --with-hardware chooses the particular DAQ hardware you are using. Currently
defined values are mcs for MultiChannel Systems’ original MCCard, mcsE for “revi-
sion E” or later of MCCard1, uei for United Electronic Industries’ PD2-MF64-14H
cards, and ni for National Instruments cards. These last two drivers are currently
“experimental”. I would particularly like to hear your success stories or bug reports.)

• Compile:

$ make

This will take a while. You may see various compiler warnings, such as:

SD BandFlt.C:97: warning: assignment to ‘short int’ from ‘float’

1If you don’t know which version you have, first try mcs. If the data look good in scope, you are set. If
not, try mcsE instead.

7

Wagenaar, MEABench Compilation and installation 8

These can safely be ignored. Actual compiler errors are another story, of course: If
you see something like:

SD BandFlt.C:52: ‘sqr’ undeclared (first use this function)
make: *** [SD BandFlt.o] Error 1

you have discovered a bug, which I would like to hear about (see Reporting bugs in
chapter 8.

• If compilation went well, you may now complete the installation by typing:

$ make install

Depending on the installation location you have chosen using --prefix=..., you may
have to become super user (root) before executing make install.

• If the installation location you chose is in your path already, you can run MEABench
programs simply by typing their name. If not, you can either modify your path variable,
or copy the program mea from the MEABench ‘bin’ directory to a location in your
path. That will allow you to run MEABench programs by typing, e.g., mea rawsrv.

• If you are using kernel 2.6.x, make install will also have installed the MCCard driver
in the /lib/modules tree, so you can load the driver simply by typing modprobe MCCard.
(This probably requires super user privileges.)

• If you are using kernel 2.4.x, you should manually copy MCCard-linux-2.4/MCCard.o to
an appropriate system location so that modprobe can load it. Alternatively, you can
use insmod .

You may have noticed that the installation procedure closely matches the standard GNU
style. Generic information about GNU style installation is provided in the file INSTALL in
the top directory of the MEABench source tree.

Chapter 3

Examples

In this chapter you will learn how to do most common tasks with MEABench; subsequent
chapters will provide a reference guide to individual components. I will assume that you
have already compiled MEABench and installed it in a place where your unix shell can find
it.

3.1 Ensuring that the driver is loaded

[This assumes you are using the MultiChannel Systems driver; for other drivers, contact the
author of that specific driver.] Start by checking that all hardware is connected properly.
Then open a terminal window, and type lsmod. If ‘MCCard’ is listed in the resulting output,
you are good to go. Otherwise, try typing modprobe MCCard. (You will likely have to run
that as super user; use su or sudo and be aware of the responsibility associated with super
user privileges.) If that gives an error (e.g. the system cannot find the file), cd to the
directory where you built MEABench, then type insmod MCCard-linux-2.6/MCCard.ko if
you are using a 2.6.x kernel, or insmod MCCard-linux-2.4/MCCard.o if you are using a
2.4.x kernel. After all this, type lsmod again. This time, ‘MCCard’ should be listed. If not,
contact the author.

3.2 Displaying electrode traces on-line

This example shows how to display incoming data fom an MEA in real time.
Start by checking that all hardware is connected properly, with an MEA locked in the

pre-amplifier. Then open two terminal windows.

• Run the visualization program, scope from the first terminal:

$ scope

Error from Sockclient: Constructor failed at connect [Connection refused]
Error from Sockclient: Constructor failed at connect [No such file or directory]

The warnings are normal, and indicate that the scope is not yet ‘connected’ to any
input. We will fix that in a moment. Let’s first take a look at the scope window:

9

Wagenaar, MEABench Examples 10

The top area contains a lot of controls, which you will learn to use gradually. The
main part of the window displays an 8 by 8 grid of rectangular panels, blank for now,
which will show electrode traces in a moment. The panels are layed out in the same
shape as the physical electrodes on an MCS MEA, with the corner positions occupying
the auxiliary channels A1 through A3. The bottom right corner is not connected to
anything on our data acquisition board. If you are using a ‘hex’ MEA, you can click
the ‘Hex’ button in the second row of controls to change the layout appropriately.

• Start the core data acquisition program, rawsrv in the second terminal:

$ rawsrv

This is rawsrv, compiled for use with the following hardware:

Pre-amp: MEA1060 by MultiChannel Systems
A/D: MCCard by MultiChannel Systems
Driver: MCCard.o by Thomas DeMarse
Plugin: MCS by Daniel Wagenaar

rawsrv>

The information printed by rawsrv may be different if you configured MEABench for
different hardware.

• Put the cursor in the ‘Raw source’ box of scope, and hit return, or re-select raw
from the pull-down menu. The label ‘Not found’ should be replaced by ‘New/Ready’,
indicating that the scope and rawsrv are now connected. You will also notice that
the graphs now are adorned with a zero-line.

• Return input focus to the terminal with rawsrv, and set the data acquisition running:

Wagenaar, MEABench Examples 11

rawsrv> run

Gain setting is 2 (+/- 0.683 mV full range)
Trigger detection is disabled.
Stimulation blankout is disabled.
Stimulated channels: none
Running...

Notice that the time displayed at the far right of the second row of controls in the
scope runs.

• Click the ‘Center’ button of the scope to remove DC offsets from the traces. Now may
be the time to explore the other controls in the top row of the scope. Help balloons
pop up when you hover the mouse cursor over any item.

• To stop data acquisition, bring input focus to rawsrv, and press Ctrl-C.

(interrupt)
rawsrv>

• The scope may be terminated using the ‘Close’ button provided by your window man-
ager. The rawsrv should be terminated by pressing Ctrl-D, or by typing ‘quit’:

rawsrv> quit

$

3.3 Online spike detection

The next example will extend the previous one, by adding a spike detector, and a recorder
to save the data to hard disk.

• Open four terminal windows, and start scope and rawsrv as before. In the following,
I will let you figure out in which window to type from the prompts shown. For example,
I’ll write

rawsrv> run

and leave it implicit that you need to bring keyboard focus to the terminal window in
which you started rawsrv, and then type ‘run’.

• Start the spike detector, and configure it:

$ spikedet

spikedet> source raw

Source is raw
spikedet> type 3

Type is BandFlt-25
spikedet> thresh 5

Threshold is 5
spikedet>

Wagenaar, MEABench Examples 12

The threshold is specified in terms of an estimate of RMS noise. The spike detector can
only base this estimate on observing the noisy signal and guessing which part is noise.
This is not an exact science, and spikedet implements more than one algorithm. See
section 6.2 for details. If you can think of a better scheme, please contribute it!

• Set the rawsrv running:

rawsrv> run

Gain setting is 2 (+/- 0.683 mV full range)
Trigger detection is disabled.
Stimulation blankout is disabled.
Stimulated channels: none
Running...

(Is the scope aware of the existence of rawsrv and spikedet? If not, use the ‘Raw
source’ and ‘Spike source’ controls to remedy the situation.)

• The spike detector needs to be ‘trained’ on the amount of noise in the source:

spikedet> train

Type is BandFlt-25
Threshold is 5
Training...

• A few seconds will pass, and then the spike detector will return:

Training complete
spikedet>

• Interrupt the rawsrv as before.

• Start and configure the recorder:

$ record

record> cd

Working directory: /home/wagenaar/tmp
record> source raw spike

Sources are:
raw [raw]
spike [spike]

(The recorder tells you that it is about to record from rawsrv, which provides a stream
called raw of type raw, and from spikesrv, which provides a stream called spike of
type spike.)

• Prepare the recording:

record> record firstdata

Sources are:
raw [raw]
spike [spike]

Wagenaar, MEABench Examples 13

Waiting for START from raw
Waiting for START from spike

The recorder will output files called ‘firstdata.raw’, and ‘firstdata.spike’, but for now
it’s waiting for the data to arrive.

• Start the spike detector:

spikedet> run

Source is raw
Type is BandFlt-25
Threshold is 5
Quick recording disabled
Excluded electrode channels are: none
Disabled analog channels are: None
Waiting for START from raw...

As you can see, the spike detector is quite chatty, and tells you lots of things you
already know. It helps to prevent surprises later...

• Let’s record precisely 100 seconds:

rawsrv> run 100

Gain setting is 2 (+/- 0.683 mV full range)
Trigger detection is disabled.
Stimulation blankout is disabled.
Stimulated channels: none
Running...

• The spike detector will confirm that the run started:

Running...

As will the recorder:

Recording from raw into firstdata.raw without triggering
Recording from spike into firstdata.spike without triggering

It is important to set the different programs in motion in the right order: downstream
first. The programs will automatically wait for a START signal from their source, and
they will wait forever if the source is already running when they open the communica-
tion channel.

• After 100 seconds, rawsrv will stop, and the spike detector will issue an end-of-run
report:

STOP received - 1511 spikes detected
Buffer use percentages: 1
spikedet> (Client ‘record’ lost)
spikedet>

• The recorder will also report some statistics:

Wagenaar, MEABench Examples 14

Recording from raw ended
Buffer usage: 9
Recording from spike ended
Buffer usage: 1 4
record>

Those ‘buffer usage’ numbers are shown for each of the communication channels be-
tween pairs of MEABench programs. If any number is above 80 (percent), the recorder
will warn of the risk of buffer overruns.

• Take a look at the ‘description’ files that record generated. They are called ‘first-
data.raw.desc’ and ‘firstdata.spike.desc’. They contain more statistics about the run,
which may be helpful for your or your computer to interpret the data later on.

3.4 Triggered recording

This final fully worked example explains how to perform event-triggered recording. Let’s
assume that we have a stimulator connected to the MEA, which delivers current pulses on
one of the channels once every few seconds. We want to record the responses.

• The first step is to connect a TTL trigger from the stimulator to channel A1 on the
data acquisition card.

• Then, set up the rawsrv for trigger detection:

$ rawsrv

rawsrv> trigchannel 1

Trigger detection is disabled
rawsrv> trigthresh 3000

Trigger detection is disabled
rawsrv> usetrig 1

Trigger detection is enabled on channel A1 - threshold is 3000

If you are using MCS hardware, zero volts is represented as digital value 2048, and a
TTL trigger will max out the amplifier at digital value 4095, so a threshold halfway
is appropriate. If you are using different hardware, use the following trick: set the
rawsrv running, and open a scope on it. Control-double-click on the panel displaying
A1. In the controlling terminal, you will see a lot of numbers scrolling past. Those are
the digital values read from channel A1. 50 ms of data is shown, one millisecond per
line (if the terminal window is wide enough). If you catch a trigger pulse using the
‘Freeze’ button, and display it in a 50 ms window, you can figure out both the baseline
value and the peak value, and set a threshold based on those. Here’s a part of the
output I obtained doing this experiment:

36.746 2383 2384 2383 2383 2383 2383 3534 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095
36.747 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 4095 2793 2446 2392
36.748 2378 2371 2370 2373 2376 2379 2380 2381 2381 2381 2382 2382 2382 2382 2382 2381 2383 2382

The trigger pulse is clearly visible as a sequence of maxed-out values (4095).

• Set up the recorder for triggered recording:

Wagenaar, MEABench Examples 15

$ record

record> source raw

Sources are:
raw [raw]

record> trecord secondfile 50 450

Sources are:
raw [raw]

Waiting for START from raw

• Start the data acquisition:

rawsrv> run

Running...

• Now set the stimulator going, and watch the progress using scope.

• After the stimulation program has ended, stop the recording by pressing Ctrl-C in
rawsrv’s terminal window. Do NOT terminate the recorder, instead, termi-
nate the source. That way you are guaranteed that the final trigger window is saved
to disk properly.

3.5 Using Commander

Here is an example script for commander that reads a raw file from ‘noisy.raw’, filters 60 Hz
noise out of it using a reference signal on channel A2, and detects spikes using BandFlt at
five times RMS noise. The results are saved as ‘denoised.spike’.

Start programs
new replay so:noisy.raw
new filter60hz/60hz so:reraw lock:a2 nper:100
new spikedet so:60hz ty:3
new record so:spike

Check whether they came up OK
expect replay 1 replay>
expect 60hz 1 60hz>
expect spikedet 1 spikedet>
expect replay 1 replay>

Let’s train the spike detector
tell filter60hz cont
tell replay run
sleep 5
tell spikedet train
flush spikedet
expect spikedet 20 spikedet>
dieif spikedet STOP received before training complete
flush replay
intr replay
expect replay 5 replay>

Wagenaar, MEABench Examples 16

Good, let’s go.
tell spikedet run
tell record record denoised
expect record 1 Waiting
expect spikedet 1 Waiting
tell replay run
flush record
expect record 1000 record>

All done.
quit

Chapter 4

Basics of the toolset

MEABench consists of a number of independent linux command line programs. Some of
these programs are servers, that make the result of their computations available to others.
Others are simply clients, that read data from one (or several) of the servers, but do not
make their results available. Many programs are both client and server. Such programs can
be thought of as generic filters.

This section describes some of the internals of MEABench, essential for potential de-
velopers, and hopefully helpful for users who want to understand how things work. When
first reading of this document, you may wish to skip ahead to the next chapter, the list of
components.

The core of MEABench is a library of C++ classes that can be used to easily construct
new components. This library is stored in the meabench/base subdirectory. Presently, the
only library documentation is contained in the source (header) files.

Components of MEABench communicate with each other in a standardized way. Servers
publish a shared memory stream, from which clients can read asynchronously. Currently,
two data types are supported: raw, which contains raw digital data as read from the driver,
and spike, which contains information about spikes. Internally, raw data is represented by
C++ datatype Sample, while spike data is represented as Spikeinfo. These datatypes are
defined formally in meabench/common/Types.H.

Associated with each stream is some header information, from which clients can find out
how much data is ready to be read from the stream.

Servers never check whether clients are keeping up — it is up to the individual clients to
detect overruns. This philosophy was adopted because some clients may not care too much
about overruns (e.g. display programs) whereas others do (filters and recorders). All current
core clients detect buffer overruns and report buffer usage at the end of a data taking run.

In addition to shared memory streams, servers publish a wakeup socket, from which clients
can receive wakeup calls whenever a given amount of data is available in the stream. The
wakeup socket also notifies clients when a run starts or ends, and when triggers are detected.

17

Chapter 5

List of components

These are the programs that currently make up MEABench. Following sections detail each
program.

• Rawsrv — The grandmother server. It reads data from the hardware using Tom
DeMarse’s driver and makes it available as a raw stream.

• Spikedet — Basic spike detection. It reads from a raw stream, and publishes a spike
stream.

• 60hz — Template filter to reduce 60 Hz pickup.

• Salpa — Stimulus artifact filter.

• Record — Records raw or spike data to disk.

• Replay — Replays files created by Record.

• Scope — GUI program to display raw and spike data online.

• Spikesound — GUI program for online sonification of spike data.

• Flexraster — GUI program to display raster plots of spike data online.

• Monitor — A debugging aid, it shows the status of all servers.

• Neurosock and Nssrv — An alternative to Rawsrv that allows one to dedicate one
computer to data acquisition, and another for online analysis.

The following is a set of utility programs that can be used with MEABench or on their
own right.

• Runmeab — Opens a set of xterms from which MEABench programs can be launched.

• Spikedump — Converts a spike file into human readable form.

• Doublectxt — Takes a spike stream and a raw stream, and tags additional context
on to the spike information from the raw channel at which the spike occurs.

• Noisehisto — Takes a raw stream and outputs a histogram of voltages observed in
each channel.

18

Wagenaar, MEABench List of components 19

• Noiseshape — Takes a raw stream and outputs the first few central moments of the
voltage distribution for each channel.

• Uniquespike — Output spikes found in one but not in another file.

• Trigvar — Computes the variance in a triggered raw stream as a function of time
post stimulus.

• A growing set of additional utilities needs to be documented.

Note that command names are usually capitalized in this manual, but must always be
spelled all lowercase on the command line.

Chapter 6

Details of each component

This section explains the core MEABench components in more detail. Most of these com-
ponents have a command line interface. Thus, the following entries focus mostly on the
available commands. In addition to the commands listed in the individual descriptions be-
low, the following commands are common across components:

• ? — Provide help in the form of a list of commands with brief descriptions.

• quit — Terminates the program gracefully. The same can be effected by pressing
Ctrl-D at the prompt.

Servers that are capable of loading and saving data to disk support:

• cd [directory] — Change or report current working directory.

• ls [arguments] — Directory listing as per /bin/ls.

• mkdir [directory] — Create a new directory.

• ! command [args] — Execute an arbitrary shell command.

Client programs support:

• source [stream-name] — Specify from which other MEABench program the data is to
be taken by specifying its stream-name.

6.1 Rawsrv

Rawsrv reads raw data from the hardware and publishes it as a shared memory stream
called raw. It is an extremely straightforward piece of software. Other than providing a
nice large buffer to prevent overruns, it is able to detect trigger signals on any of the analog
channels (A1, A2 or A3) and to blank out the electrode channels for some time during and
after a trigger.

These commands are supported:

• run [time-in-s] — Starts a run. Optional argument limits the duration of a run to the
given time. Otherwise, press Ctrl-C to stop a run.

20

Wagenaar, MEABench Spikedet 21

• usetrig [0/1] — Enables (1) or disables (0) reporting trigger events on the wakeup
socket and in the auxilliary data of the raw stream.

• trigchannel [1/2/3] — Selects which of the three analog channels to monitor for
triggers.

• trigthreshold [digivalue] — Specifies the (digital) value of the threshold above which
a trigger is detected.

• autothresh [multiplier] — Sets the threshold for trigger detection at multiplier stan-
dard deviations above the channel mean value.

• gain [gain-step] — Sets the gain of the MCS amplifier. Type gain ? to list possible
values. For our Multi Channel Systems card, the values are as follows:

value full range (uV) step (µV)

0 3.410 1.665
1 1.205 0.588
2 0.683 0.333
3 0.341 0.167

• blankout [period-in-ms | 0] — Enables or disables blanking of electrode channels
during a trigger. Blanking is performed by replacing the data by the average of four
samples obtained just prior to the stimulus. Blanking only works if trigger detection
is enabled. Signal blanking is largely outdated by Salpa.

6.2 Spikedet

Spikedet detects spikes on a raw data stream and publishes them as a spike stream called
spike. Several different types of spike detection may be supported by Spikedet. Currently,
these are the fully supported spikedetectors:

1. BandFlt — Straightforward threshold detector;

2. AdaFlt — Threshold detector with adaptive threshold;

3. LimAda — Better threshold detector with adaptive threshold;

4. SNEO — Detector based on instantaneous energy in signal.

BandFlt is thoroughly tested and quite stable. AdaFlt (7/12/01) seems to work well except
that it’s threshold varies during bursts; LimAda solves this problem. SNEO has never worked
as well as I would hope. See below for details on each detector.

These commands are supported:

• source — See general description.

• type [detector-name] — Changes or reports the detector being used. Use type ? to
query supported detectors.

Wagenaar, MEABench Spikedet 22

• run — Starts a single run. If the detector hasn’t been trained yet, the first few seconds
of the input data are used for training.

• cont — Same as run, but restarts automatically after receiving a STOP command
from the server.

• train — Trains the detector on the current source. Unusually, this command does not
wait for a START message from the source to begin operation. It is recommended to
let the source run for a few seconds before commencing training, to ensure that any
transients have died out.

• info — Reports the result of training.

• threshold [value] — Sets or reports the threshold for spike detection, in units partic-
ular to each detector. Thresholds are automatically scaled for each channel.

• disableanalog [channel . . . | –] — Disables spike detection on the given set of analog
channels. Typical use is to exclude the 60 Hz reference signal from being recorded in
spike files.

• excludechannels [RC . . . | –] — Marks a set of electrode channels as ‘dead’. Useful
to prevent spurious spike detection on clamped down or flaky channels.

• outputfilt [0/1] — Enables or disables the creation of a shared memory stream called
spraw, on which the filtered raw data is reported.

• savenoise filenamebase — Saves the current training results as ‘filenamebase.noise’.
This data consists of estimated RMS noise values, and can be used by Salpa as well.

• loadnoise filenamebase — Loads a previous set of training results from ‘filename-
base.noise’. Salpa generated noise files may be loaded as well.

• alias — A fake command. Reminds the user of the existence of the ‘–alias’ flag (see
below).

In some circumstances it may be useful to run more than one spike detector simulta-
neously. To make that work, Spikedet can be made to publish its results on a differently
named stream, by starting it as ‘spikedet -alias streamname [cmds]’.

6.2.1 BandFlt

BandFlt passes the raw data through a band pass filter. Currently a first order filter with
cutoffs at 150 Hz and 2.5 kHz are used, but this may be changed in ‘spikedet/Filters.H’.
It detects spikes if the filtered stream exceeds a given multiple of the estimated RMS noise
in each individual channel. Useful threshold values are 4 to 6. It should be noted that
noise in raw data is far from Gaussian, so future versions may be changed to employ more
relevant noise measures. In the current implementation, the noise is estimated by a slightly
unusual method, which is intended to minimize the effect of spikes and stimulus artifacts
on the estimate. Three hundred 10 ms windows of electrode data is read. For each of these
windows the RMS value is calculated. The results are sorted, and the final estimate of RMS
noise is taken to be the 25th percentile of the measurements. While I recognize that this

Wagenaar, MEABench Spikedet 23

method finds an underestimate of the RMS noise, this algorithm is much more useful than
straightforward RMS measurement, for the stability reasons mentioned above.

6.2.2 AdaFlt

AdaFlt uses the same initial band pass filter and also collects 128 windows of length 10 ms
from the beginning of the recording. From then on, it proceeds differently: it measures the
minimum and maximum values in each of those windows, and finds the 40th percentile of
both collections of extrema. The initial thresholds for upward and downward spikes are based
on the result. While running, it keeps collecting minima and maxima in 10 ms windows,
although it uses only one in ten windows1. Whenever 128 windows have been collected, the
thresholds for that channel are updated.

For every detected spike, the ruling threshold at the time of detection is written into the
spike stream.

Useful threshold values are 1.3 to 2 (multiples of the extrema).

6.2.3 LimAda

After band pass filtering as for BandFlt, LimAda splits the data stream into 10 ms windows,
and determines the 2nd and 30th percentiles of the distribution of voltages found in each
such window. Call these voltages V.02 and V.30. (Note that both are usually negative because
of the filtering, which sets V.50 ∼ 〈V 〉 ∼ 0.) It then performs two tests:

• Is the ratio of V.02 over V.30 less than 5?

• Is the absolute value of V.30 (significantly) non-zero?

The first test makes sure that there was no actual spike in the window; the second test
makes sure that the data in the window was not blanked out (e.g. by Rawsrv or Salpa).
If both tests are passed, the windows is considered ‘clean’, and V.02 is used to update the
current noise threshold estimate. Spikes are detected whenever the absolute value of the
voltage exceeds the current threshold, which is the output of passing the absolute values of
V.02 from all ‘clean’ windows through a low-pass filter with a time constant of 100 windows
(1 second if all are clean). This algorithm adapts rapidly to changing noise situations, while
not desensitizing during bursts.

The threshold settings are normalized to estimated RMS noise, so values of 4 to 6 are
reasonable. As of August 26, 2004, this is my favorite spike detector.

6.2.4 SNEO

SNEO also passes the raw data through a band pass filter, but then computes the instan-
taneous energy in each electrode stream:

Ec(t) = V ′
c (t)2 − Vc(t)V ′′

c (t).

This energy is smoothed over 5 samples and spikes are detected if it exceeds a given multiple
of the RMS value of the energy. Although Kim and Kim (IEEE Biomed eng 47 (2000) 1406)
report that SNEO works very well at S/N as low as unity, I am less convinced.

1In fact, for every window it collects extrema for only six out of 60 electrode channels, to spread the
computational load.

Wagenaar, MEABench 60hz 24

Useful threshold values seem to be 5 to 20.

6.3 60hz

60hz provides a template filter to reduce 60 Hz line pickup in raw data and publishes the
results as 60hz. It works best if an external lock in signal is provided on one of the analog
lines. If such a signal is not available, fast adaptation should be chosen to reduce the effects of
gradual desynchronization. Templates are collected for each electrode channel independently.

These commands are supported:

• source — See general description.

• run — Starts a single run. At the start of the run, a small amount of data is used to
train the filter. During this period no output is generated.

• cont — Same as run, but restarts automatically after receiving a STOP command
from the server.

• nperiods [periods] — Sets the adaptation time of the filter. Old contents are decayed
by a factor 1/e after the given number of periods. (A period is 16.67 ms1.)

• templsize [size-of-template] — Number of data points to use for each template. This
value is rounded internally to a power of two. Low values reduce the efficacy of the
filter, but high values require longer training times and may make the system less
stable. The default value, 128, should normally be adequate.

• wait [0/1] — Enables (1) or disables (0) waiting for a START command from the server.
Operation with waiting disabled is poorly tested and may result in desynchronized and
useless recordings. Not recommended for normal use.

• lockin [– | An] — Enables or disables the use of an external synchronization pulse on a
given analog channel. Rising edge on the specified channel will be used to synchronize
the filters to the physical 60 Hz signal.

• limit [adaptation-period-in-seconds or 0 for unlimited] — It may be desirable to stop
adaptation altogether after a certain amount of time. For example, if very strong signals
are expected occasionally on the electrode channels. Such signals might be picked up
by the template and cause echos at 16.67 ms intervals. In practice, blockonmark
provides a better solution for most cases.

• blockonmark [– | An [block ms [thresh digi [lookahead ms]]]] — If your data contains
(stimulation) artifacts, the adaptive filter tends to create echoes of those artifacts. This
command can be used to temporarily suspend the adaptation (but not the filtering)
during artifacts. When enabled, filter60hz will detect upward threshold crossings on
the specified analog channel (An), and disable adaptation on all electrode channels for
the given period (block ms). The threshold is specified in digital units (thresh digi).

1Note for non-US users or programmers: the period is specified in units of the sample period by the
variable REALPERIOD in “60hz/DefsḢ”. When changing this variable, please be aware that MCCard’s
sampling frequency, although very constant, is not exactly 25.000 kHz.

Wagenaar, MEABench Salpa 25

The final argument (lookahead ms) can be used if the marker may occur (a fraction of)
a millisecond after the start of an artifact1.

The current version of 60hz does not support qrec.
For off-line usage, the command Posthoc60hz will read from a file and output to a unix

pipe. It has the additional benefit of skipping artifacts when training. (This requires some
command line switches — try ‘posthoc60hz –help’.)

6.4 Salpa

Salpa is the artifact suppression algorithm described in Wagenaar and Potter, Real-time
multi-channel stimulus artifact suppresion by local curve fitting, J. Neurosci. Meth. 120:2
(2002) pp 113–120. Please refer to that paper for functional details. You may pick up a
preprint from http://www.biology.ucsd.edu/~dwagenaa/pubs.html.

Salpa supports the following commands:

• run — Starts a single run. At the start of the run, a small amount of data is used to
train the filter. During this period no output is generated.

• cont — Same as run, but restarts automatically after receiving a STOP command
from the server.

• digithresh [digital-threshold] — Sets the threshold for acceptable asymmetry in digital
units, or reports the current value. In the paper, this ‘asymmetry’ is referred to as the
deviation D.

• noisethresh [threshold-in-units-of-RMS-noise] — Sets the threshold for acceptable
asymmetry in units of the estimated RMS noise, or reports the current value.

• halfwidth [halfwidth-in-ms] — Sets the salpa filter halfwidth. Except for a factor
τsample, this is the number N in the paper.

• asymduration [asymmetry-window-width-in-ms] — The window over which the asym-
metry is measured. Except for a factor τsample, this is the number δ in the paper.

• blankduration [blanking-duration-in-ms] — Determines how much signal is blanked
even after the asymmetry (deviation) test has been passed successfully. This is a bit
of a hack, which was not used in the paper.

• lookaheadwindow [look-ahead-window-in-ms] — The last few samples before the sig-
nal pegs are probably not entirely artifact-free. This command allows you to blank a
little bit of data just before the stimulus artifact onset.

• digirails [digi-rail1 [digi-rail2]] — Specifies which digital values constitute the rails of
the ADC. Defaults 0 and 4095 are for MultiChannel Systems hardware with Rawsrv.

1Even if the marker is timed to exactly coincide with the start of the artifact, lookahead ms can be used
to provide a safety margin of a few samples.

Wagenaar, MEABench Record 26

• fixedperiod [period-ms delay-ms [blank-ms]] — In some cases artifacts may occur that
do not quite peg the channel. If this happens in a triggered recording, Salpa can still
work: just specify the length of the trigger window (period-ms), the amount of time
before the onset of the artifact in each window (delay-ms), and the duration of the
fast part of the artifact (blank-ms). Typical values for blank-ms would be one or two
milliseconds. Salpa will kick in after that and determine the end of the irrepairable
part of the artifact using the asymmetry (deviation) test as usual.

• pegontrigger [– | An [blank-ms [tresh-digi]]] — A more flexible solution to the problem
explained above. Salpa can treat a positive threshold crossing on one given channel
(usually A1) as a signal to consider all channels pegged. blank-ms has the same meaning
as for fixedperiod, and thresh-digi specifies the threshold (in digital units) for the
detection of stimulation markers.

• channels [– | + | CR . . .] — Normally, salpa operates on all electrode channels.
Using this command you can restrict operation to any subset. This is useful when the
artifacts on most channels reliably last less than 1 or 2 ms, so the salpa algorithm
doesn’t improve things. Say ‘channels CR1 CR2 . . . ’ to limit operation to channels
CR1, CR2, . . . ; or ‘channels –’ to operate on all channels. Alternatively, say ‘channels
+ CR . . . ’ to add channels to an existing list, or ‘channels – CR . . . ’ to remove channels
from an existing list. ‘channels +’ restores a list previously removed by ‘channels –
’. Channels excluded from operation are still subject to blanking by fixedperiod or
pegontrigger. This is usually desirable. If not, you can set the blanking period to
zero, e.g. by ‘pegontrigger A1 0’.

• source — See general description.

• train — Estimate the RMS noise level of the input. This takes a few seconds. train
must be executed while the source is already running, unlike run and cont, which wait
for the source to start.

• savenoise — See Spikedet.

• loadnoise — See Spikedet.

• info — See Spikedet.

An off-line version of salpa is available as well; it’s called posthocartifilt, and supports
most options of the MEABench component through command line switches. The command
is self-documenting: type posthocartifilt --help for details.

6.5 Record

Record is used to record raw or spike streams to disk. The program can record several
streams in parallel. Record can optionally respect the triggers on the associated wakeup
socket. In this case, only the parts of the stream immediately surrounding the triggers are
saved to disk, and an auxiliary file with trigger times is constructed.

These commands are supported:

Wagenaar, MEABench Replay 27

• record filename [comments] — Starts recording to the specified file. The filename is
augmented by the type of the data. Optional comments are saved to a description file,
if enabled.

• multirecord base-filename [comments] — Starts recording to many files one after the
other. The filename is augmented by the start time of each recording, and by the type
of the data.

• trecord filename pretrig-ms posttrig-ms [comments] — As record, but respects trigger
information. The window of recording is specified as time before the trigger and time
after the trigger, both in ms.

• multitrecord base-filename pretrig-ms posttrig-ms [comments] — multitrecord is to
trecord as multirecord is to record.

• source [name[/type] . . .] — Specifies the sources for recording. Record knows the
type of most core MEABench streams. If it doesn’t know for the stream you name, the
type can be specified by appending it to the stream name after a slash. (For example,
if coolsort is a new stream of type spike, you would say ‘source coolsort/spike’.)

• describe [0/1] — Enables (1) or disables (0) the generation of a description file (file-
name constructed by augmenting the data filename by ‘.desc’). Description files contain
lots of useful information pertaining to a run and are in human readable form.

Record can record from several sources simultaneously: just specify them all together as
arguments to source. For example, ‘source raw 60hz spike’ would prepare a recording from
three sources. If more than one stream of the same type is recorded, the streamnames are
incorporated in the filenames. Recording from several sources does have a few limitations:

• Recording ends immediately when the first stream terminates. A small amount of data
from the end of the other streams may be lost.

• For triggered recording, only the first stream will yield a ‘.trig’ file.

To avoid these limitations, it is possible to run several instances of Record, and have each
of them record from a single stream.

It is possible to terminate a recording session before the source ends by pressing Ctrl-C
in the Record terminal window. This is useful for recording a short segment of raw data
parallel to the beginning of a longer spike data recording.

6.6 Replay

Replay replays files recorded by Record. Currently, raw and spike data are supported,
and are published as reraw and respike respectively. Replaying a spike file results in both a
raw and a spike stream, the raw stream reporting the contexts stored in the spike stream.

These commands are supported:

• play [filename [type]] — Plays the given file. Normally, Replay automatically detects
the type of the data. If it doesn’t, help it by specifying it explicitly. Without a filename,
plays the last played file again.

Wagenaar, MEABench Scope 28

• slow [slowdown-factor] — Slows down playback by a given (real valued) factor. Useful
for output to Scope. Arguments smaller than one cause speed up.

• run — Alias for play without arguments.

• source [filename [type]] — Specifies a filename (and optional type) for later playback.

• blankout [period-in-ms or 0] — Enables or disables blanking of electrode channels
during a trigger. Blanking is performed by replacing the data by the average of four
samples obtained just prior to the stimulus. Blankout works only for triggered files.
Replay does not detect stimuli itself.

• cd [directory name] — Changes the current working directory.

• ! — Shell escape. Useful, e.g. for ‘ls’.

• selftrig [0/1] — Enables or disables spike detection from an analog channel in the
stream. When disabled, triggers stored in the .desc file of a file produced by Record’s
trecord command are still reported.

• trigchannel [1/2/3] — Sets the analog channel on which triggers are detected (if
selftrig is enabled).

• trigthreshold [digivalue] — Sets the threshold for such trigger detection.

6.7 Scope

Scope shows raw data and spikes in a similar format as the graphical parts of my older
Qmeagraph program, or Multi Channel Systems’ MCRack. It mostly explains itself.
Here are some useful hints:

• Double clicking on any of the small electrode traces opens a separate window showing
that channel.

• Selecting window width, pre-trigger length, or voltage ranges in Scope does not affect
recording in any way.

• The scrollback buffer (enabled by clicking the ‘Freeze’ button) is very useful to home
in on some interesting event. Raw data in the scrollback buffer can be saved to disk
using the ‘Save’ button which appears whenever ‘Freeze’ is enabled. Currently, the
scrollback buffer is about 5 seconds long. This is a direct function of the length of the
shared memory segments used to pass raw data around.

• These known bugs exist in scope:

– Spike circles at the edges of the electrode traces leave semi-permanent smudges.

– When scrolling back, older spikes may lose their red marks if there are many
detected spikes. This is the result of the spike data shared memory segments
being too short.

– When replaying a spike stream, red spike marks sometimes appear out of nowhere.
These ghosts are easily recognized, because no context data is plotted around
them. This bug has been a mystery so far.

Wagenaar, MEABench Spikesound 29

6.8 Spikesound

Spikesound makes spikes audible through a PC sound card. It can read of any spike stream
(e.g. straight from the spike detector, or from replay). The GUI controls are minimal:

• Source — Selects the MEABench stream to get spikes from. That usually is spike to
read from spikedet, or respike to read from replay.

• Play — Switch sound on or off

• Volume — Master volume control.

• –ve only — Limit sonification to downward spikes. The obvious counterpart can be
implemented on request.

• Rethreshold — It is often useful to set the spike detection threshold fairly low in
spikedet and use off-line spike sorting to clean up the data. However, hearing all
the near-noise-level spikes is not very appealing. This control allows you to hear only
strong spikes. For example, I like to set the spikedet threshold to 4.5σ, and set the
spikesound rethreshold factor to 120%.

• A1, A2, A3 — Enable or disable beeps when a spike is detected on one of the auxillary
channels. For example, I like to use A1 and A3 for triggers, and A2 as a 60 Hz lock-in
signal. So I may want to hear a sound when a trigger happens, but I don’t want to
hear the 60 Hz signal.

Customization note: The current version uses output buffers of about 25 ms to improve
timing accuracy and reduce lag. If you prefer hearing longer noises, or your sound card /
CPU do not allow you to use such short buffers, you may change the value of AUDIO LOG FRAG

in spikesound/Audio.H. The length of the buffer is:

τ =
2 AUDIO LOG FRAG

176.4
ms.

6.9 Flexraster

Flexraster displays raster plots of spike activity in triggered recordings. It currently relies
on ‘trigger spikes’ on channel A1. There are six different ways to create rasters:

• Spont — Spikes from all channels are combined as blue dots. Each line of the raster
is Pre plus Post ms wide. The raster plot scrolls vertically, showing the most recent
interval on top. A new raster line is generated whenever there is a trigger on A1, or
every second if there has not been any trigger.

• 8x8Rec — Spikes from each channel are displayed in separate panels. Within each
panel, the display is as for Spont.

• 8x8Stim — If the shape of the trigger pulse is used to encode a CR-position, each panel
displays all spikes that occurred in response to stimulation on a certain channel. See
figure for details.

Wagenaar, MEABench Commander 30

• V Stim and H Stim — Similar to 8x8Stim, but panels are generated only for those
CRs that actually receive stimuli.

• Cont — Arguably the most useful function, creates a scrollable and scalable raster
plot with 60 electrodes stacked vertically and time running continuously left to right.
Trigger pulses are indicated by red marks.

Flexraster is under development. Suggestions for improvement are especially welcome.

6.10 Commander

Commander allows you to start and control MEABench programs from within a central
shell-like language. This is mainly useful for off-line analysis. You may find an example of
its use in chapter 3. Commander logs all interaction with the programs it controls to the
screen, as well as to an optional logfile. Creating logfiles is highly recommended, because
it allows you to keep track of how exactly you processed the data, and to check whether
MEABench behaved as you expected it to behave.

Commander supports the following commands:

• new program[/id] [args] — Start a new program. An optional id may be assigned to
the program to disambiguate references to two instances of the same program, or for
ease of reference. Args are passed to the program unchanged.

• tell program—id command [args] — Send a command to the named program. Args are
passed unchanged.

• expect program|id timeout regexp — Wait until the named program produces output
that matches regexp. If this does not happen within timeout seconds, report an error.

• dieif program|id regexp — Look back at the output captured by the last expect, and
abort if any line matches regexp. (This may be a line that was output long before the
line that made expect happy.)

• dieunless program|id regexp — Look back at the output captured by the last expect,
and abort unless some line matches regexp. (This may be a line that was output long
before the line that made expect happy.)

• flush program|id — Flush all output from the named program, so that future expect
commands will not match any output prior to the flush.

• intr program|id — Send an Interrupt signal to the named program, i.e. simulate
pressing Ctrl-C.

• kill program|id — Send a Term signal to the named program, terminating it. Normally,
you’d use close to achieve the same result more gracefully.

• close program|id — Close a running program normally, as if Ctrl-D was pressed. If
closing normally fails, the program is terminated as per the kill command.

• wait program|id — Wait for the named program to terminate. Use this if you just sent
it a quit command. Normally, close is an easier way to terminate subprocesses.

Wagenaar, MEABench Monitor 31

• log [logfile] — Write all future output to the named file, or stop logging if no argument
is given.

• comment comments — Write the specified comments to the log file.

• sleep time s — Sleep for the given number of seconds. The subprocesses are not
affected.

• quit — Exit Commander after closing all subprocesses.

Unlike other MEABench programs, commander does not present the user with a prompt.
You are not really expected to type away at commander from a terminal (although you can).
Instead, you’d normally prepare a script, and then run commander on it:

$ mea commander < myscript.cmdr

Any error that happens during script execution (e.g. failure to start a subprocess or failure
to read an expect-ed string) causes Commander to terminate immediately with an error
report written to the screen and the log file.

An auxillary program, Cmdlog2html exists to convert log files produced by Comman-
der to html format. Log files are human readable, but the html format looks nicer.

6.11 Monitor

Monitor is mostly a debugging tool. It displays the status of each of the MEABench servers.

6.12 Neurosock and NSsrv

Run Neurosock on the machine that contains the physical hardware, and MEABench on
any other machine that can connect to the first machine through the internet. It can be
run without any arguments for 64-channel MCCards, or as neurosock -set MC128 for 128-
channel MCCards.

NSsrv is exactly like Rawsrv, except that it doesn’t record directly from the MEA
hardware. Instead, it connects to Neurosock on the same or another computer. For 64-
channel MCCards, run NSsrv without arguments; to use the 2nd half of 128-channel cards,
run it like nssrv -s raw2.

NSsrv has the same commands as Rawsrv, with one addition:

• ip aa.bb.cc.dd — Specify the IP address of the computer running Neurosock.

Note: Only one instance of NSsrv can read from a 64-channel Neurosock or half a 128-
channel Neurosock at a time. It is not possible to specify gain separately for the two halves,
and the gain command will fail if you try to set gain on one half while the other half is
running.

Wagenaar, MEABench Spikedump 32

6.13 Spikedump

Spikedump converts spike files to human readable form, dropping the context data. It can
read from a specified file, or from stdin. It does not presently run of MEABench streams.
Output are time (in seconds), channel (hardware order, counting from zero), height (digital
value) and width (in samples).

6.14 Doublectxt

Doublectxt combines a raw stream with a spike stream to construct a file with two context
fields per spike. The resulting file can be read with the loaddblctxt.m matlab function.

6.15 Other utilities

This documentation is presently incomplete regarding the utilities in the meabench/utils and
meabench/perl subdirectories. These utilities will provide a brief Usage message if invoked
with a ‘– – usage’ argument.

6.16 Matlab functions

A number of matlab functions included with MEABench can be used to load MEABench
data files into matlab, to perform channel numbering convention conversions and to perform
some common visualization tasks. These functions are installed in /opt/meabench/matlab
(if you follow the suggested installation procedure in chapter 2). In order to use them, you
need to tell matlab about that directory:

>> addpath(’/opt/meabench/matlab’);

The functions are the following:

• burstdet timeclust
[tt,chcnt,dtt] = BURSTDET TIMECLUST(spks, bin s, thr mean)
Given a set of spikes SPKS loaded by LOADSPIKE or LOADSPIKE NOC, finds syn-
chronized bursts (on 5 or more channels).
This works by first finding bursts on individual channels using TIMECLUST, and
then finding synchronized bursts by clustering the single-channel bursts, again using
TIMECLUST.
Both BIN S and THR MEAN are optional; default values are 0.1 s and 5x resp.

• cleanctxt
[ctxts, idx] = CLEANCTXT(contexts) returns cleaned up contexts:
- The first and last 15 values are averaged and used to compute DC offset.
- These two estimates are weighted according to their inverse variance.
- The DC offset is subtracted.
- If any sample in -1:-0.5 or 0.5:1.5 ms is more than half the peak at 0 ms, the spike
is rejected.
- Use CLEANCTXT(contexts, testidx, relthresh) to modify this test:

Wagenaar, MEABench Matlab functions 33

TESTIDX are indices (1:74) of samples to test,
RELTHRESH is a number between 0 and 1.

- Additionally, the area immediately surrounding the peak is tested at the 0.9 level:
The spike is also rejected if any sample in -1:-0.16 or 0.16:1.5 ms has an absolute value
more than 0.9 x the absolute peak value. This test is modified on its outer edges by
the edges of testidx, but cannot be modified independently.
Returns: ctxts: the accepted contexts, with DC subtracted

idx: the index of accepted spikes.
Requirements: contexts must be as read from loadspike, i.e. 74xN (or

75xN).
Acknowledgment: The algorithm implemented by this function is due

to Partha P Mitra.

• cr2hw
hw = CR2HW(c,r) converts row and column to hardware channel number. c, r count
from 1 to 8; hw counts from 0.
hw = CR2HW(cr) converts combined row and column to hardware channel number.
cr can be in the range 11..88.
Illegal c, r values return -1. c, r or cr may be matrices, in which case the output is also
a matrix.
The dimensions of c, r must agree.

• heightscat88
HEIGHTSCAT88(spks) plots scatter plots of the (spontaneous activity) spikes in SPKS.
It stacks thin horizontal raster plots for each channel. Within each plot, spikes are po-
sitioned based on their height (amplitude).
SPKS must have been loaded using LOADSPIKE or LOADSPIKE NOC.
Column-row numbers are computed from channel numbers using hw2cr.
p = HEIGHTSCAT88(spks) returns the plot handle.

• hist2dar
mat=hist2dar(X,Y,nx,ny,flag) returns a matrix suitable for pcolor containing the crosstab
counts of X and Y in automatically selected bins: you pick the number of bins, the
code determines the edges based on the min and max values in X and Y.
If optional argument FLAG is present, the result is also plotted.

• hist2d
mat=hist2d(X,Y,x0,dx,x1,y0,dy,y1,flag) returns a matrix suitable for pcolor containing
the crosstab counts of X and Y in the bins edges defined by x0:dx:x1 resp y0:dy:y1.
If optional argument FLAG is present, the result is also plotted. [mat,xx,yy]=hist2d(...)
returns x and y arrays as well, so you can call pcolor(xx,yy,mat).

• hw2cr
[c,r] = HW2CR(hw) converts the hardware channel number hw (0..63) to column and
row numbers (1..8).
cr = HW2CR(hw) converts the hardware channel number hw (0..63) to a 1+row+10*col
format (11..88). hw may be a matrix, in which case the result is also a matrix.
Illegal hardware numbers result in c,r == 0.

Wagenaar, MEABench Matlab functions 34

• loaddesc
d = LOADDESC(fn) reads the description file FN or FN.desc and returns a structure
with values for each line read.
The fields are named from the label in the description file.
All values are converted to double. Original strings are stored in the field LABEL str.
Repeated keys are stored in a cell array.

• loadraw
y=LOADRAW(fn) reads the raw MEA datafile fn and stores the result in y.
y=LOADRAW(fn,range) reads the raw MEA datafile fn and converts the digital values
to voltages by multiplying by range/2048.
Range values 0,1,2,3 are interpreted specially:
range value electrode range (uV) auxillary range (mV)

0 3410 4092
1 1205 1446
2 683 819.6
3 341 409.2

”electrode range” is applied to channels 0..59, auxillary range is applied to channels
60..63. Note that channel HW is stored in the (HW+1)-th row of the output.

• loadspike
y=LOADSPIKE(fn) loads spikes from given filename into structure y with members
time (1xN) (in samples) channel (1xN) height (1xN) width (1xN) context
(75xN) thresh (1xN)
y=LOADSPIKE(fn,range,freq khz) converts times to seconds and width to millisec-
onds using the specified frequency, and the height and context data to microvolts by
multiplying by RANGE/2048.
As a special case, range=0..3 is interpreted as a MultiChannel Systems gain setting:
range value electrode range (uV) auxillary range (mV)

0 3410 4092
1 1205 1446
2 683 819.6
3 341 409.2

”electrode range” is applied to channels 0..59, auxillary range is applied to channels
60..63.
In this case, the frequency is set to 25 kHz unless specified.

• loadspike noc
y=LOADSPIKE NOC(fn) loads spikes from given filename into structure y with mem-
bers time (1xN) (in samples) channel (1xN) height (1xN) width (1xN) thresh
(1xN)
Context is not loaded.
y=LOADSPIKE NOC(fn,range,freq khz) converts times to seconds and width to mil-
liseconds using the specified frequency, and the height and context data to microvolts
by multiplying by RANGE/2048.
As a special case, range=0..3 is interpreted as a MultiChannel Systems gain setting:
range value electrode range (uV) auxillary range (mV)

0 3410 4092

Wagenaar, MEABench Matlab functions 35

1 1205 1446
2 683 819.6
3 341 409.2

”electrode range” is applied to channels 0..59, auxillary range is applied to channels
60..63.
In this case, the frequency is set to 25 kHz unless specified.

• randscat88
RANDSCAT88(spks) plots scatter plots of the (spontaneous activity) spikes in SPKS.
It stacks thin horizontal raster plots for each channel. Within each plot, spikes are
randomly positioned vertically for clarity.
SPKS must have been loaded using LOADSPIKE or LOADSPIKE NOC.
Column-row numbers are computed from channel numbers using hw2cr.

• timeclust
[t0,cnt,dt] = TIMECLUST(tms s,bin s,thr mean,thr abs)
Given a set of times TMS S and a bin size BIN S (both nominally in seconds), find
the locations, volumes, and widths of peaks in the time distribution.
A peak is (primitively) defined as a contiguous area of bins exceeding
THR ABS and exceeding THR MEAN times the mean bin count. Either THR MEAN
or THR ABS may be left unspecified, in which case THR ABS defaults to >=2.

Chapter 7

File formats

The current version of MEABench uses two binary file formats: raw, and spike. All other
files are plain text.

7.1 Raw files

Raw files contain electrode voltage values in digitized form. The scaling factor between
digital values and microvolts is not stored in the .raw file, but in an accompanying .raw.desc
file. The number of channels in a raw file is currently fixed to 64, and not noted in the
.raw.desc file. This will be changed in a future release. File format is: one 16-bit integer for
every channel, 64 channels per scan, repeated for the length of the file. Thus, in (almost) C
notation, a raw file would be defined as:

typedef short int scan[64];
typedef scan rawfile[];

7.2 Spike files

Spike files contain information about detected spikes. The time of detection (in samples) as
well as the channel number, height (in digital units) and width (in samples) are stored in
a structure that also contains a limited amount of ‘context’, or sample values immediately
surrounding the spike. The BandFlt and AdaFlt spike detectors also record the threshold
used for detecting that particular spike in the structure. In (almost) C notation, a spike file
would be defined as:

typedef struct {
long long time; // 64 bits of time (in sample periods from start o f file)
short channel; // a channel number, 0–63
short height; // height from baseline, possibly negative (in digital units)
short width; // the width of the spike (in samples)
short context[74]; // 24 samples before and 49 samples after peak
short threshold; // detection threshold used for this spike
} spike;
typedef spike spikefile[];

As for raw files, conversion factors may be found in a description file (.spike.desc).

36

Chapter 8

Hints and tips

This section contains solutions to some common problems and provides some hopefully
helpful hints.

8.1 Help! None of the programs will run.

You may find that none of the programs will run, and complain like this:

/opt/meabench/bin/replay: error in loading shared libraries: libmea.so: cannot open
shared object file: No such file or directory

This means that they cannot find the common libraries libmea.so or libmeagui.so. This
problem may be fixed by typing

export LD_LIBRARY_PATH=/opt/meabench/lib:$LD_LIBRARY_PATH

before running the command. Similarly, if the perl programs complain about missing li-
braries, try:

export PERL5LIB=/opt/meabench/libexec:$PERL5LIB

(If you installed MEABench somewhere else, you’ll know how to modify the above lines.)
If you use mea this problem is less likely to show.

8.2 Shared memory problems

You may find that a server program refuses to run, complaining like this:

Error from ShmSrv: Segment exists, please delete using ‘ipcrm shm 3417399’

This normally means that the server crashed on a previous run, leaving behind the shared
memory segment used for its output stream. Executing the suggested command often solves
the problem, but you may be rewarded by this when you rerun the program:

Error from ShmSrv: Segment exists, and cannot be accessed. Any lingering clients?
Before deleting the segment using ipcrm (see manpage) these may have to be stopped.

37

Wagenaar, MEABench Hints and tips 38

This means that some client is still connected to the (defunct) crashed server. Quitting and
restarting such clients is a pretty sure way of solving the problem. If quitting the client is
undesirable, most clients can be convinced to renegotiate the connection to their server using
the command source. Once the clients have been cleared, the segment normally goes away
spontaneously. If the problem persists, you may have to resort to ipcs and ipcrm. See the
linux man pages for details.

Error from ShmSrv: creat

This exceedingly unhelpful error message may mean that you don’t have a .meabench subdi-
rectory in your home directory. This is where MEABench tries to link all its shared memory
segments and wakeup sockets. To make this problem go away for ever, create the directory
using mkdir ~/.meabench.

8.3 Help! Client X keeps saying ‘waiting for START

from Y’ and won’t run.

Most clients synchronize the start of their run with the start of a run of the server they are
connected to. To make this work smoothly, start the client off (typically by typing run)
before starting the server. Some clients allow you to disable this synchronization behavior,
e.g. through a wait command.

8.4 Abbreviating commands

All programs that provide the user with a command line accept non-ambiguous abbreviations
for commands. For example, in most programs, run can be abbreviated to r.

8.5 Passing commands at run time

All programs that provide the user with a command line can also process commands passed
at startup time. For example, instead of entering into the following dialog:

$ spikedet

spikedet> type 3

Type is BandFlt-25
spikedet> threshold 4

Threshold is 4
spikedet> source 60hz

Source is 60hz
spikedet>

you may also say:

$ spikedet ty:3 thr:4 so:60hz

Type is BandFlt-25
Threshold is 4
Source is 60hz
spikedet>

Wagenaar, MEABench Hints and tips 39

This is especially useful if you find yourself quitting and restarting a program frequently,
since with the second scheme, the shell history facilities can be used.

At start up time, commands are separated from their arguments by a colon rather than
a space, and arguments are separated from each other by a comma rather than a space.

8.6 Interrupting long commands

All command line programs respond to Ctrl-C by returning to their prompt. If they don’t
respond immediately, press Ctrl-C again after a second or two. Pressing Ctrl-C twice in
quick succession kills the program forcefully, quite possibly leaving a shared memory segment
behind as explained above. Pressing Ctrl-C while the program is waiting for user input no
longer exits the program. All programs support a quit command to exit cleanly, but Ctrl-D
(end of input) is also an acceptable way to exit them.

8.7 Debugging information

Most programs support two additional commands to aid debugging. These are:

• dbx [0/1] — Enables (1) or disables (0) debugging output. Debugging output varies
wildly from component to component and from release to release. Mainly of use for
developers, who can sprinkle their code with sdbx(. . .) calls to track bugs down.

• clients — Prints a list of all clients currently connected to this server program. Mainly
intended for debugging, the output format is not very user friendly.

8.8 Contacting the author

For further information, or to report bugs, please contact:

Daniel Wagenaar
UC San Diego, Neurobiology Section 9500 Gilman Drive m/c 0357
La Jolla, CA 92093
dwagenaar@ucsd.edu

Suggestion for improvement are always welcome, but I cannot guarantee I’ll have time to
implement them. You too can contribute by sending me your bug fixing and feature adding
patches by e-mail. Please use ‘diff – C2’ against the latest public release version.

The latest versions of MEABench and this documentation can be found on

http://www.its.caltech.edu/~pinelab/wagenaar/meabench.html

8.9 Reporting bugs

When reporting bugs, please include the following information:

• The version of MEABench you are using.

Wagenaar, MEABench Hints and tips 40

• The version of g++ you are using (type g++ --version to get this information).

• The version of Qt you are using (type moc -v to get this information).

• The output of the ‘configure’ script.

• If compilation failed: the output of the ‘make’ command (not just the lines containing
the error).

• For runtime errors: Which programs you are running, which commands you have
executed within those programs, and a description of what you are trying to do as well
as any relevant screen output. A succinct set of conditions that reproducibly produces
the error is very much appreciated.

